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PERIODIC PULSE HEATING OF METALS 

A. L. Glytenko and B. Ya. Lyubov UDC 536.241:535.211 

The article deals with the effect of the time-dependent form and heating by preced- ~ 
ing pulses on the resulting temperature field in metal subjected to periodic pulsed 
heat treatment. 

The widespread use of lasers in various technological processes requires the construction 
of theoretical models describing~the effect of laser radiation on substances. At present 
there are available many theoretical investigations dealing with continuous and pulsed treat- 
ment of materials; their results were generalized, e.g., in [1-7]. However, periodic pulsed 
loading received much less attention [8, 9] although in practice it is ever more widely used. 

A unidimensional temperature field T(x, t) in a half-space with an arbitrary time depen- 
dence of the energy flux density can be written in the form [i0] 
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For expression (i) we use t h e  Laplace-Carson transformation [ii] 

= T,cq- "V~ q-(p) exp (--x ]/p--/a-). (2) 

To find ~(p), we expand q(t) into a Fourier series, Eq. (2) assumes the form 

where 
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mo = 2~/T, T is the period of action, i.e., the interval between the instants of the onset of 
two adjacent pulses. Going over to the original, we have 
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The obtained expression gives the temperature field in metal with an arbitrary time-dependent 
pulse shape. The pulse, normalized at the maximum to the unit q = q/qo and described as the 
function K = t/To, has practically the same shape for many types of laser if we neglect the 
high-frequency structure and regard only the envelope [3] which, with good accuracy, is ap- 
proximated b y  the trapezoidal shape 
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and expression (3) can therefore be  considerably simplified. When we substitute (4) into Eq. 
(i), we have 
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Here, T ffi T/To, To = 2qo aT~o/~/X, n = ~l~o, z ffi x12 a~o. At the initial instant we put the 
temperature of the metal equal to zero, T n ffi 0. Expression (5) describes the temperature field 
in the n-th load cycle (n-- l)n ! ~ ! n~, where for k = n-- i, summing with respect to i in- 
eludes only the terms for which ~i + (n - I)~ < ~. When in (5) we let ~, tend to zero, and 
~a to unity, we obtain the temperature field for rectangular p~ses 
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With n = I, relations (5), (6) describe the change of temperature for single-pulse loading. 
The temperature of the surface z = 0 in accordance with (5), (6) is equal to: 

n - - 1  3 
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n--I 

h = O  

Since in modern lasers operating in periodic pulse regime the pumping time is much longer than 
the pulse [12] i we write ~ in the form K = (n -- I)~ + 8, where 0 is measured from the instant 
of the beginning of the n-th pulse, 0 < 0 < n, expressions (7), (8) can be changed to the com- 
mon form 

n--I 

? (o, ~) = ? ,  (o, o) + ~ ~ (9) 
,,=l (oq- k~l) ~/s 

Here, Tx (0, 0) is the change of the surface temperature induced by the first pulse, a = (I + 
Ka -- ix)/4. The use of diaphragms, e.g., in the form of a rotating disk with sectors cut out 
for modulating the continuous radiation into a periodically pulsed one makes it possible to 
obtain various pulse shapes, and also to vary the pulse width and the interval between pulses. 
Figure I shows the change of the surface temperature of a molybdenum specimen according to the 
experimental data (solid curves) and according to the calculation by formula (9) (dashed 
curves). With constant flux densities the surface temperature is maximal at the instant the 
pulse ends (Fig. la) whereas with variable radiation intensity the surface temperature attains 
its maximum during the action of the pulse (Fig. ib, c). Thus, at the instant of action of 
the first pulse the surface temperature is maximal at the instant 
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Fig. i. Change of the surface temperature of a molybdenum spec- 
imen: a) rectangular pulse, xo = 23.10 -3 sec, qo = 3.5"10 ~ W/m ~, 

= 2; b, c) trapezoidal pulse, b) xo = 9.10 -z sec, qo = 3.17"10 ~ 
W/m ~, ~ = 2; c) To = 8"10 -n sec, qo =2.77"10 ~W/m a, ~ =4. AT, ~ t, 
sec. 
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By changing the number of pulses we can obtain the required temperature with fixed radiation 
intensity. The instant ~mn of attaining the maximal temperature in the course of action of 
the n-th pulse can be written in the form ~mn = ~m* + (n -- i)~. 

When metal surfaces are heat-treated by concentrated energy fluxes, it is indispensable 
to know the rates of change of temperature because when these rates are very high (-I0 e ~ 
sec or more [i]), they lead to a shift of the critical points of phase transformations, to 
the appearance of various microstructures in the subsurface layer including metastable ones. 
Using expressions (5), (6), we find: 
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h 
The instants ~mn and ~c n of attaining the maximal heating and cooling rates in the section 
z = 0 during the n-th load cycle are determined from the solution of the transcendental equa- 
tion 
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for 9ariable radiation intensity in a pulse and 
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for  constant flux density. In accordance with (9), the rate of change of the surface tempera- 
ture y =~T(O, ~)/~, is equal to 

n--1 

,i~ 2 (0 + kil) 312 ' (14). h =  1 

where 7, = ~T,(0, 0)1~0. The heating rate of the surface Y1 is maximal at the instant ~h = 
~,, i.e., in the case of a rectangular pulse at the instant of the onset of action. The cool- 
ing rate of the surface, however, has its highest value at the instant the pulse ends (Fig. 2), 
It follows from expression (14) that ~he heating and cooling rates during successive pulses 
(n >_ 2) are maximal at the instants Emn = ~* + (n -- l)n and ~mCn = i + (n -- l)n,, respectively, 
The heating rates somewhat decrease and the cooling rates increase, but these changes are very 
small. For instance, the heating rate at the instant ~ = 90 + ~,(n = i0, ~ -- I0) differs from 
its value for ~ = E~ by a mere 0.3%, and the cooling rates at the instants of the end of the 
tenth and the first pulses differ by 1.2% from each other. Consequently, also the rate of 
change of the temperature for z r 0 in the course of periodic pulse treatment changes practi- 
cally perlodically with the period n. Thus, to determine the heating and cooling rates in the 
course of periodic pulsed loading it suffices to know the rate of change of the temperature 
caused by the first pulse (Fig. 2), the relations (i0), (ll) for n = i. The instants of at- 
taining the maximal heating and cooling rates at different depths are found from expressions 
(12), (13) for n = i. The change of the maximal cooling rate vs. depth is presented in Fig. 
3. 

If during the process of heating the surface temperature remains Sufficiently long in 
the range Tf < T(0, ~) < Tm, then a phase transformation occurs which leads to~a change of the 
surface properties of the material. In the course of periodic pulsed loading Tf < T(0, ~) < 
T m with no < n < n,; no and n, are determined from 

n o - -  1 

7"(o, (no l)~) = ~ . ~  (~n) ''/~ > ? s ,  (15) 
h = l  

nl--I 

7(0, ~.,,,) = f', (0, ~0 + ~ ~ (~ + kn) -'/~ < ~ (16) 
k=l 

If we stipulate fixed values of n, and n,, then the inequalities (15), (16) bound the permis- 
sible values of radiation intensity and of the period of action. After termination of the 
n,-th pulse we carry out cooling up to the instant ~s, T(O, ~s) = Tf, and then we again switch 
on the radiating oscillator. The change of surface temperature for ~ > ~s has the form 

f'(o, ~)= "?,(o, o )+  ~ ( ,  + kn)-' /2+ ~ ( o +  kn) -x/2 . 
= k = l  

Here, ~ is measured from the onset of action of the nl-th pulse, ~ = (n -- I)~ + 8 + i + ~C' ~c 
is the duration of the cooling process from the end of the nl-th pulse to the onset of the 
second series of pulses, 8 is measured from the instant of the onset of action of the n-th 
pulse in the second series, 0 < 0 < n. By arranging heat cycling in such a manner, it is pos- 
sible to maintain the subsurface l~yer of metal for the required time in the specified tempera~ 
ture regime. 

As an example we will examine the optimization of the radiation parameters in two-pulse 
loading. For the sake of simplicity we take the rectangular ~ulse shape. Assume that it is 
required that at the time of action of the second pulse Tf < T(0, ~) < Tm" According to (6), 
at the instant of the onset ~ = q and of the end ~ = ~ + I of the second pulse the following 
inequalities have to be fulfilled: 

V~- V~Tc- I > A/l• V,I + i - V~ + i < A~I~0 (17) 
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Fig. 2. Rate of change of temperature with constant (dashed curves) and variable 
(~I = 0.15; ~2 = 0.21) (solid curves) energy flux density: i) z = 0; 2) z = 0.5, 

Fig. 3, Change of the maximal cooling rate vs depth with constant (dashed curve) 
and variable (~1 = 0.15; ~2 = 0.21) (solid curve) energy flux density. 

Here, Af = 0.STfX/~7~, A m = 0.STm% ~/a , ko = qo~. When ~ >> I, (17) assumes the form 

The second inequality serves for determining the energy characteristics of a separate pulse, 
and the first inequality, with selected magnitude of ko(qo and To), yields the interval sep- 
arating the onsets of the first and second pulses from each other 

NOTATION 

T, temperature; T , initial temperature; To surface temperature at the instant of the 
n . 

end of the rectangular pulse wlth power density qo; qo, energy flux density at the maximum; 
q, energy flux density at the instant t; x, three-dimensional coordinate; To, pulse width; 
~, period of action; a, thermal diffusivity of the metal; %, thermal conductivity of the me- 
tal; ~ji, Kronecker delta; e = ~ -- (n-- i)~; n, number of the given load pulse; y, rate of 
change of the surface temperature in dimensionless form; Tf = Tf/To; Tf, temperature of phase 
transition in the solid state; T m = Tm/To; Tm, melting point. 
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